
Evolution of power law distributions in science and society

Young-Pyo Jeon and Benjamin J. McCoy*
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA

�Received 8 March 2005; revised manuscript received 22 July 2005; published 27 September 2005�

Power law distributions have been observed in numerous physical and social systems; for example, the size
distributions of particles, aerosols, corporations, and cities are often power laws. Each system is an ensemble
of clusters, comprising units that combine with or dissociate from the cluster. Constructing models and inves-
tigating their properties are needed to understand how such clusters evolve. To describe the growth of clusters,
we hypothesize that a distribution obeys a governing population dynamics equation based on a reversible
association-dissociation process. The rate coefficients are considered to depend on the cluster size as power
expressions, thus providing an explanation for the asymptotic evolution of power law distributions.
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Power law distributions are obvious features of many
complex systems and go by different names, e.g., fat tails in
economics and Zipf’s law in demographics and linguistics
�1�. Several processes have been proposed to explain power
laws, for example, self-organized criticality �2� has been
suggested as the origin of power laws in complex systems,
highly optimized tolerance �3� is a mechanism that relates
evolving structure to power laws in interconnected systems,
and random walk models describe the movement of particles
influenced by a stochastic mechanism �1,4�. Based on
previous studies of kinetics, we propose a reversible
association-dissociation mechanism that can produce power
distributions.

Table I suggests how a range of systems, including par-
ticles, aerosols, corporations, and cities are often distributed
in frequency as power laws, here written as proportional to
�−�. A frequency distribution can be constructed by a binning
operation, which divides the total size range into intervals
�bins� and then counts the number of items in each bin. The
frequency is plotted versus size on log-log coordinates,
yielding a straight line with slope −� if a power law is
obeyed. A frequency distribution is transformed by summa-
tion or integration into a cumulative distribution, such that
all items larger than �or smaller than� the given size are plot-
ted. Integrating �−� yields �1−�, so that on log-log coordi-
nates, a cumulative distribution has the slope 1−�. When
�=2 the cumulative distribution has the slope −1 and is
known as Zipf’s distribution. According to Table I, city �5�
and corporation size distributions �6� have the Zipf form.

Our approach for investigating the formation and evolu-
tion of power law distributions is based on previous studies
of polymer and particulate systems that add or remove
monomers �represented by the property value �m� to clusters
according to kinetic rate expressions �7�. Such a growth or
dissolution process is visualized as analogous for individuals
arriving or leaving a city, and for dollars received or paid out
by a corporation, for example. We use the same terminology,
so that a monomer is any unit adding to a cluster. Cluster size
is the property � �e.g., dollars of receipts� and its unit, or

monomer, value is �m �e.g., one dollar�. Just as in crystal
growth, where many monomers may deposit on the cluster,
we consider they deposit independently and separately. We
have also applied the general ideas of the method, including
the formulation and moment solution of population balance
equations �7�, to investigate the growth and disassembly of
clusters.

For clusters of particles, cities, businesses, and other sys-
tems, the size distribution is defined by C�� , t�d�, represent-
ing the number of clusters at time t in the differential prop-
erty range �� ,�+d��; the definition can also be applied for
the monomer distribution, m��� , t�. Moments are defined as
integrals over the property �,

C�n��t� =� C��,t��nd� , �1�

where the limits of integration are minimum and maximum
values of �. The system property � is a positive integer, and
for such discrete distributions, moments are defined by sum-
mations. For large �, however, the difference between dis-
crete and continuous distributions is negligible, and a sum-
mation from �=1 can be replaced by the integral in Eq. �1�.
In general the mathematical moments do not exist for power
distributions unless the largest size is limited.

Following methods previously reported �22�, we hypoth-
esize that power law distributions obey a governing popula-
tion balance equation. The growth or shrinkage process by
which units having the property value ��=�m are reversibly
added to or dissociated from a cluster of mass � can be
written as

C��� + M���� �
kd���

kg���

C�� + ��� , �2�

where C��� is the cluster composed of number of units � and
M���=�m� is the monomer. This process intrinsically con-
serves the properties designated by �, and is naturally repre-
sented by balance equations in terms of �. The balance equa-
tion �22� governing the cluster distribution C�� , t� is

�C��,t�/�t = − kg���C��,t�m�0��t� + kg�� − �m�C�� − �m,t�m�0�

��t� − kd���C��,t� + kd�� + �m�C�� + �m,t� , �3�

where m�0��t� is monomer concentration, here considered
constant. The first two terms on the right-hand-side account
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for cluster growth by addition of monomer by second-order
kinetics. If monomers are abundant and are not limiting in
cluster growth, first-order kinetics holds. The remaining
terms account for cluster breakage by the loss of one mono-
mer by first-order kinetics. The modification of the equation
allowing for a size distribution of monomers or including
source terms is straightforward. A formal expansion for �m
�� yields a Fokker-Planck equation
�C��,t�/�t = �m���kd��� − kg���m�0��t��C��,t��/��

+ 1
2�m

2�2��kd��� + kg���m�0��t��C��,t��/��2 + ¯ .

�4�

The rate coefficients for addition �growth� and removal �dis-
sociation� are kg��� and kd���, respectively, considered in
general to depend on �, the size of the cluster. As proposed in
our previous work �22�, we use power expressions for the
rate coefficients

kg��� = ��� and kd��� = ���. �5�

We consider m�0��t� is constant m0
�0� and define the dimen-

sionless time variable 	, and a rate coefficient ratio k,
	 = t�m0

�0�, k = 1 − �/��m0
�0�� . �6�

For growing systems, k has a value between zero and one
�0
k
1�. If distribution growth is controlled by limited
monomer, then m�0��t� decreases as individuals form clusters,
influencing the evolution, as in crystallization from a satu-
rated solution �22�.

When the exponents of the rate coefficients are equal,
�=�, Eq. �3� yields the dimensionless difference-differential
equation

�C��,	�/�	 = �� − 1��C�� − 1,	� − ��C��,	�

+ �1 − k���� + 1��C�� + 1,	� − ��C��,	�� ,

�7�

where we have set �m=1. Equation �4� yields the partial dif-
ferential equation
�C��,	�/�	 = − ��k��C��,	��/�� + 1

2�2��2 − k��kC��,	��/��2

+ ¯ . �8�

Equation �8� with second-order derivative terms is a convec-
tive diffusion equation, which for the special case �=0 has a
well-known exponential solution �23,24�. For the growing
system �k�0� with the characteristic cluster size ���L�, Eq.
�8� becomes

�C��,	�/�	 = − ��k��C��,	��/�� + O�1/L2� . �9�

Compared to the first-order term ��1/L�, the second order
term ��1/L2� is negligible if L is large. As we will demon-
strate, the first-order solution is sufficient to derive power
distributions. The first-order Fokker-Planck equation �Eq.
�9�� can be satisfied even for the case when k=0, because we
are describing cluster kinetics. In this case the rate of growth
and dissociation are the same, kg���m0

�0�=kd���. The time
derivative is zero, the system becomes an equilibrium state,
and the first-order Fokker-Planck equation is satisfied.

The difference-differential equation �3� is similar to sto-
chastic equations for the transition probability with birth-
and death-rate power expressions �25,26�. Whereas birth and
death rates in transition probability equations usually are re-
stricted to linear or quadratic dependence �26�, the proposed
model can be applied with any � �usually between 0 and 5�.

We now illustrate how power law distributions evolve ac-
cording to the dimensionless population balance, Eq. �7� or
�8�, representing growth or dissolution. The evolution can be
understood by considering the rate coefficients with a power
expression in the first-order partial differential equation for
distribution growth. For the case when �=�, we truncate Eq.
�8� to first order:

�C��,	�/�	 + ��k��C��,	��/�� = 0. �10�

This partial differential equation �10�, having the common
form of a continuity equation, is fundamental to population
balance modeling. The �-derivative growth term �27,28� con-
ventionally appears in crystal growth. A solution can be ob-
tained by Laplace transformation for the general initial con-
dition C�� ,	=0�= f���. For a distribution to grow, it is

TABLE I. Power of the frequency distribution �−� for different
systems.

System �

The degree distribution of coauthorship network
�physics� �8�

0.91–1.3

Cluster size distribution of phase ordering system
at steady state �9�

1.25

Distribution of financial stock market price
changes �10�

1.5

Distribution of terrestrial animal species as a
function of their length �11�

2

English word frequency �Zipf distribution� �12,13� 2

Mass distribution of atmospheric aerosols for
coagulation �14�

2

Size distribution of cities �population larger than
105� in the U.S. and India �5�

2

Size distribution of U.S. firms based on receipts
�6�

2

Outlink degree distribution for telephone calls
between individuals �15�

2.1

Web connectivity �16� 2.1

Internet backbone �15� 2.15–2.2

Collaborations of film actors �15,16� 2.3

Distribution of wealth for the 400 richest people in
U.S. �17�

2.36

Distribution of total market values of companies in
the stock market �17�

2.4

Probability that a certain web document contains k
outgoing links �18�

2.45

Size distribution of businesses and customers �19� 2.5

The degree distribution of co-authorship network
�biomedicine� �20�

2.5

Size distribution of ion �Xe, Kr� clusters in
particle fragmentation �21�

2.6

Citation patterns of scientific publications �16� 3

Electric power grid of the western U.S. �16� 4
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necessary either that new clusters nucleate or existing clus-
ters are ready to grow. We apply the general boundary con-
dition C��=1,	�=g�	�, which means that a certain number
g�	� of emergent clusters of size �=1 �monomers� are avail-
able for cluster growth.

The Laplace-transformed solution of Eq. �10� for the gen-
eral initial and boundary conditions �f��� and g�	�� is

C��,s� = ��−�/k�exp�− s�1−�/k�1 − ����
1

�

exp�sy1−�/k�1

− ���f�y�dy + g�s��−� exp�s�1 − �1−��/k�1 − ��� .

�11�

Dominating the result, the term �−� represents a distribution
with slope −� on log-log coordinates.

The long-time asymptotic dominance of the power term
�−� is readily understood by recognizing that early-time tran-
sients will dissipate. Then in Eq. �10� the time derivative
becomes negligible relative to the � derivative; thus
��k��C�� ,	�� /���0, which integrates to C��−�. This re-
veals the underlying mathematical reason for evolution to the
power distribution.

A quite simple case that illustrates this behavior is
the initial condition f���=0 and boundary condition
g�	�0�=C0. This means that at an instant after 	=0, a con-
stant number of emergent clusters, or nuclei, become avail-
able for growth of the distribution. As in chain polymeriza-
tion �29�, the chain-reaction nature of monomer addition
ensures that a distribution of cluster sizes will be obtained. In
terms of the unit step function, defined as u���0�=0 and
u��0�=1, the solution for Eq. �10� is

C��,	� = C0�−�u�	 − ��1−� − 1�/k�1 − ��� . �12�

Other initial and boundary conditions also yield the power
distribution. For example, the initial condition

f��� = C0�1 − u�� − �0�� �13�

is a rectangular distribution with a step down to zero at
�=�0. An exponentially increasing boundary condition from
0 up to C0 is

g�	� = C0�1 − exp�− 	/��� �14�

which means that at long time the number of emergent clus-
ters of size �=1 approaches C0, constant with time. For Eq.
�14� and the initial condition Eq. �13�, when �=1, the distri-
bution is

C��,	� = C0 exp�− k	��1 + „exp�k	�/�

− exp�	�k − 1/����−1+1/k� − 1…u�	 − ln���/k�

− u�� − �0�„1 − u�	 − ln��/�0�/k�…� . �15�

Equations �12� and �15� are plotted in Figs. 1�a� and 1�b�,
respectively.

Consider the case when the initial condition is a power
law from �=1 to �=�0,

C��,	 = 0� = C0�−��1 − u�� − �0�� . �16�

For the exponentially increasing boundary condition �14� and
the initial condition �16�, the distribution is

TABLE II. Parameters for comparison of corporation size data
with our model. �*

max is the truncation size uncorrected for
inflation.

year 1967 1977 1987 1997

	 142 158 174 190

t 89 99 109 119

�*
max 0.7�109 2.5�109 8.0�109 25.0�109

CPI based
on 1997

4.998 2.749 1.467 1.0

�max 3.5�109 6.9�109 11.7�109 25.0�109

FIG. 1. Evolution of the size distribution for cluster growth case
Eqs. �12� and �15�: C0=100, �0=1, and the scaled time 	 increases
in steps of 5 �a� from 	=5 up to 20 with �=2, and in steps of 15 �b�
from 	=15 up to 105.

FIG. 2. Evolution of the size distribution for Eq. �17�:
C0=100, �0=3, and the scaled time 	 increases in steps of 3 �a�
from 	=4 up to 22 with �=2, and in steps of 10 �b� from 	=10 to
70 with �=2. The dotted line in �b� is the initial condition.

FIG. 3. Comparison of the model and statistical data of U.S.
company size-distribution growth in different years. The lines are
the model predictions, Eq. �17�, and symbols represent statistical
data: �a� diamond ���, 1967; �b� star ���, 1977; �c� cross ���, 1987;
�d� box ���, 1997.
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C��,	� = C0�−��1 − exp�− 	/� − �1 − �1−��/k��1 − ���u�	

− ��1−� − 1�/k�1 − ��� − u�� − �0�„1 − u�	 − ��1−�

− �0
1−��/k�1 − ���…� . �17�

Figure 2 is the plot of Eq. �17� for the cluster growth case
when the initial distribution is a power law. We note that
cluster size distributions become truncated power laws as �0
approaches unity, as depicted in Figs. 1�b� and 2�a�. Al-
though the above solutions differ for each initial and bound-
ary condition, the dominant term is always �−�. This shows
that a power law distribution evolves from an arbitrary initial
distribution, subject to the conditions that the rate coefficient
has the power form. Transients in the boundary conditions
die out as time increases, leading to the asymptotic power
behavior.

As a consequence of examining cluster size distribution
dynamics, we conclude that our population balance model
can describe cluster growth systems. Many physical and so-
cial systems intrinsically grow and thus have an historical
character, so our approach is reasonable for such accumula-
tive systems.

We now investigate the capability of the model, in par-
ticular Eq. �17�, to describe the power law evolution of cor-
poration size-distribution data. Based on the reversible, reac-
tionlike process described in Eq. �2�, the model excludes
cluster-cluster interactions such as aggregation. Although in-
cluding these interactions is possible �22�, here we assume
corporate mergers are negligible. The data examined are cu-
mulative U.S. firm size distributions classified by receipts
size for the years from 1967 to 1997 in steps of 10 years,
reported by the U.S. Bureau of the Census �30�. In Figs.
3�a�–3�d�, the symbols represent data showing how the num-

ber and sizes of enterprises increased with time for different
years. The data shown in Fig. 3 have a cumulative power law
with slope −0.94 for all years, and thus the power �=1.94 for
the frequency distribution. The model parameters are k=0.1,
�=50, and C0=6�106. Values of 	 �Table II� are scaled time
defined as 	= t�m0

�0� �Eq. �6��, so that for the base year
1878, where t=	=0, time t has the values given in Table II.
From the comparison plotted in Fig. 3, we confirm that the
power law distribution model gives a good estimation of the
U.S. firm growth. In accord with the data, the power law
distributions are truncated by the exponential part of the
equation at the value of � ��max in Table II� for the cluster
with the largest number of monomers �unit US dollars�. To
compensate for inflation, we applied the Consumer Price In-
dex �CPI� to get �max in Table II.

To understand how power laws evolve for cluster distri-
butions in science and society, we have constructed a model
based on association-dissociation processes of reversible
monomer addition to clusters. A population dynamics equa-
tion similar to those used for distribution kinetics of crystal
growth and chain polymerization describes cluster growth
with size-dependent rate coefficients. The hypothesis that
power law distributions are governed by a population bal-
ance equation realistically describes cluster-growth systems.
Mathematical solutions for the population balance equations
provide relationships among parameters and variables for the
distributions, and yield the functional form of the dominant
power law term �−�. Derived cluster size distributions show
the development of the asymptotic power law �−� at long
time. A central feature of the evolving distribution is that the
initial distribution is transformed into a power law with time.
Thus as time progresses, the power law overtakes the initial
distribution and initial transients dissipate.
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